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Abstract In this work we present a global optimization algorithm for solving a class of
large-scale nonconvex optimization models that have a decomposable structure. Such mod-
els, which are very expensive to solve to global optimality, are frequently encountered in
two-stage stochastic programming problems, engineering design, and also in planning and
scheduling. A generic formulation and reformulation of the decomposable models is given.
We propose a specialized deterministic branch-and-cut algorithm to solve these models to
global optimality, wherein bounds on the global optimum are obtained by solving convex
relaxations of these models with certain cuts added to them in order to tighten the relaxations.
These cuts are based on the solutions of the sub-problems obtained by applying Lagrangean
decomposition to the original nonconvex model. Numerical examples are presented to illus-
trate the effectiveness of the proposed method compared to available commercial global
optimization solvers that are based on branch and bound methods.

Keywords Global optimization · Lagrangean decomposition · Cuts ·
Two-stage stochastic programming

1 Introduction

Many real-world optimization problems lead to nonconvex problems [2,17,28,42]. The
mathematical models for such optimization problems include nonlinearities and/ or discrete
variables, which give rise to the nonconvexity of the model. Due to the presence of these
nonconvexities, sub-optimal solutions may be obtained with local solvers. There are many
instances where the global solution of a problem is required [33], and for these problems deter-
ministic global optimization techniques can be used to find the solution. These techniques
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guarantee global optimality for problems with special structures, and usually involve some
form of a branch and bound search.

Deterministic global optimization techniques for solving nonconvex nonlinear program-
ming (NLP) problems with special mathematical structures have been proposed by several
authors. For instance, Sherali and Alameddine [39] have presented an algorithm based on
a reformulation linearization technique for optimizing bilinear programming models, while
Quesada and Grossmann [36], Ryoo and Sahinidis [37] and Zamora and Grossmann [45] have
made extensions for handling linear fractional and concave functions within a spatial branch
and bound method. For handling nonlinear problems with factorable constraints which do not
have an explicit representation, a global optimization algorithm has been proposed by Meyer
and Floudas [31]. Zhu and Kuno [46] have developed a global optimization method called
QBB for twice-differentiable nonconvex NLPs, where quadratic lower bounding functions
are used in constructing relaxations. Excellent reviews on global optimization methods for
solving nonconvex NLP problems are given in Horst and Tuy [20] and in Floudas [15].

For mixed-integer nonlinear programming (MINLP) models, algorithms such as Outer
Approximation (OA) by Duran and Grossmann [11] and by Fletcher and Leyffer [14] yield
globally optimal solutions only if the feasible space and the objective function of the relaxed
NLP problem are convex (see [17]). Pörn and Westerlund [35] have presented an Extended
Cutting Plane algorithm for globally optimizing MINLPs with a pseudo-convex objective
function and pseudo-convex inequality constraints. For solving nonconvex MINLPs to global
optimality, a Branch and Reduce algorithm has been proposed by Sahinidis [38], on which
the commercial solver BARON is based. Adjiman et al. [3] have presented the αBB algo-
rithm for globally optimizing nonconvex MINLPs that allows handling of nonlinear functions
with no special structures. A finitely convergent decomposition algorithm based on Outer-
Approximation that relies on underestimators has been proposed by Kesavan et al. [25] for
the same purpose. Bergamini et al. [5] have presented a global optimization algorithm for
solving Generalized Disjunctive Programming (GDP) problems where spatial branch and
bound is avoided by using successive piecewise linear approximations for the nonconvex
terms. Global optimization of dynamic systems, which involve a set of first order differential
equations in the constraint set, has been dealt with by Papamichail and Adjiman [34] and
by Chachuat et al. [10]. Finally, a stochastic branch and bound method that uses stochastic
upper and lower bounds has been developed by Norkin and Pflug [32] for solving stochastic
global optimization problems. A recent paper by Floudas et al. [16] reviews recent advances
in deterministic global optimization for NLPs and MINLPs among other classes of math-
ematical problems. It is worth mentioning that solving nonconvex NLPs and MINLPs to
global optimality are NP-hard problems [41]. Therefore, the major challenge lies in develop-
ing tight bounds and relaxations that will allow the solutions of these problems in reasonable
computational times.

An important type of a large-scale problem is one where a number of nonconvex mod-
els are combined into a single model. In particular, problems with decomposable structures
arise in two-stage stochastic programming problems [7] for optimization under uncertainty.
The uncertain parameters in the stochastic programming model are often assumed to obey
a discrete distribution so that the problem can be equivalently formulated as a large-scale
deterministic multiscenario mathematical model. Here, the first stage decision variables (to
be decided prior to the appearance of the uncertainty) link together the second stage vari-
ables or recourse variables, which are decided upon after the uncertainty has been revealed.
Other examples of problems with a decomposable structure are design of engineering sys-
tems and planning and scheduling problems [6]. We focus on such decomposable problems
(model structure given in Sect. 2) and propose a global optimization algorithm for solving
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these problems since they tend to be very expensive to solve to global optimality given that
given existing global optimization algorithms scale poorly with problem size. The proposed
algorithm is aimed at producing tight lower bounds and uses a branch-and-cut framework
involving cuts that are derived from Lagrangean decomposition where the smaller decom-
posed sub-problems are solved to global optimality.

Lagrangean relaxation techniques have been used by Takriti et al. [40] and Carøe and
Schultz [9] to solve stochastic integer programs. Furthermore, decomposition techniques
based on Lagrangean relaxation have been used to optimize large models appearing in
planning and scheduling applications. For instance, a midterm planning problem has been
solved by Gupta and Maranas [19] using a hierarchical Lagrangean relaxation approach. A
Lagrangean based decomposition algorithm has been presented by van den Heever et al. [43]
to optimize models pertaining to the long-term design and planning of offshore hydrocar-
bon field infrastructures. Jackson and Grossmann [21] have developed spatial and temporal
decomposition schemes to find good local solutions to multisite production planning models.
Another notable instance where the Lagrangean based approach has been used is the pooling
problem where Adhya et al. [1] have developed a special global optimization method. In this
work they use a branch and bound framework where they use Lagrangean relaxation based
lower bounds, and prove that the lower bounds they find are at least as strong as those obtained
by solving a linear relaxation with convex estimators [30] for their pooling problem. Kuno and
Utsunomiya [27] have proposed a branch and bound algorithm where Lagrangean relaxation
has been used to obtain bounds on the global optimum for solving production-transportation
problems that have concave cost functions in the objective. In most of the work done pre-
viously on stochastic programming and planning and scheduling involving nonconvexities,
the emphasis has not been on global optimization since it is very hard to globally optimize
such large models. Also, in previous literature, there does not exist a generic algorithm for
globally optimizing such a class of decomposable problems that involve nonlinearities and
discrete variables.

In this work, we first provide a generic formulation for a class of problems with decompos-
able structures that include binary variables and nonconvex nonlinear terms. We then propose
a spatial branch-and-cut algorithm for globally optimizing such large-scale problems. The
proposed method includes cuts derived from Lagrangean decomposition to generate tight
relaxations and to find good feasible solutions. Numerical examples are presented to illus-
trate the performance of the proposed algorithm in solving such decomposable models.

The remainder of the paper is organized as follows. Section 2 gives the problem formula-
tion for the class of decomposable models considered. The technique for generating bound
strengthening cuts to be included in the convex relaxation of the original nonconvex model,
along with the method for generating feasible solutions and the proposed algorithm are given
in Sect. 3. Section 4 presents the examples on which the algorithm was applied, and finally,
conclusions are given in Sect. 5.

2 Problem description

2.1 Mathematical model

The class of decomposable mixed-integer nonlinear programming problems considered in
this paper can be described by the following formulation:
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min z = s(x, y) +
N∑

n=1
rn(un, vn)

s.t. hn(un, vn) = 0 n = 1, . . . , N
gn(un, vn) ≤ 0 n = 1, . . . , N
h′

n(x, y, un, vn) = 0 n = 1, . . . , N
g′

n(x, y, un, vn) ≤ 0 n = 1, . . . , N
x L ≤ x ≤ xU

y ∈ {0, 1}J

uL
n ≤ un ≤ uU

n n = 1, . . . , N
vn ∈ {0, 1}mvn n = 1, . . . , N
x ∈ RI , un ∈ Rmun

(P)

where the functions hn : Rmun +mvn → Rqhn , gn : Rmun +mvn → Rqgn , h′
n : RI+J+mun +mvn →

R
q

h′
n and g′

n : RI+J+mun +mvn → R
q

g′
n may be convex or nonconvex. The vectors x =

[xi ] i = 1, . . . , I and y = [y j ] j = 1, . . . , J correspond to the vectors of the contin-
uous and binary linking variables, respectively, while the sets of vectors {un}n=1,...,N and
{vn}n=1,...,N are the sets of the non-linking continuous and binary variables, respectively.
The constraints hn(.) = 0 and gn(.) ≤ 0 are the set of constraints which are particular to a
sub-model n, while h′

n(.) = 0 and g′
n(.) ≤ 0 are the linking constraints that couple the vari-

ous sub-models, and are written in terms of both the non-linking and the linking variables. It
should be noted that some of the linking constraints may not involve the non-linking variables.
For the sake of reformulation, such inequalities are assumed to be written in duplicate in each
of g′

n(x, y, un, vn) ≤ 0 n = 1, . . . , N , while equalities with no non-linking variables are
assumed to appear in duplicate in each of h′

n(x, y, un, vn) = 0 n = 1, . . . , N . The objective
function consists of two parts, where the linking and non-linking variables contribute to the
objective function through two separate functions. All the continuous and discrete variables
in the model are assumed to lie within pre-specified bounds. The terms uL

n and uU
n are the

lower and upper bound vectors, respectively, for the vector variable un . Similarly, x L and
xU correspond to the lower and upper bounds, respectively, on the variable x . It is assumed
that convex under- and/ or over-estimators can be constructed for all the nonconvex terms
present in the functions gn(.) ≤ 0, g′

n(.) ≤ 0, hn(.) = 0 and h′
n(.) = 0 (see [38]). The

feasible region of problem (P) is denoted by DP . This kind of problem formulation is quite
generic and so the algorithm developed for solving (P) can be applied to special cases of
(P), which would include nonconvex NLPs. This model can be brought to a form that can
be decomposed into at most N independent sub-models. In order to bring the model to a
decomposable form, we first reformulate the model as shown in the following section.

2.2 Model reformulation

We create identical copies of the linking variables, x and y, that are given by the duplicate
variables {x1, x2, . . . , x N } and {y1, y2, . . . , yN }. The linking variables in (P) are replaced
with these newly created duplicate variables and the following coupling constraints, which
state that the linking variables are the same across all the sub-problems, are introduced
into (P):

x1 = x2 = · · · = x N (1)

y1 = y2 = · · · = yN (2)
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We then re-write model (P) as:

min zR P =
N∑

n=1
wns(xn, yn) +

N∑

n=1
rn(un, vn)

s.t. hn(un, vn) = 0 n = 1, . . . , N
gn(un, vn) ≤ 0 n = 1, . . . , N
h′

n(xn, yn, un, vn) = 0 n = 1, . . . , N
g′

n(xn, yn, un, vn) ≤ 0 n = 1, . . . , N
xn − xn+1 = 0 n = 1, . . . , N − 1
yn − yn+1 = 0 n = 1, . . . , N − 1

x L ≤ xn ≤ xU n = 1, . . . , N
yn ∈ {0, 1}J n = 1, . . . , N
uL

n ≤ un ≤ uU
n n = 1, . . . , N

vn ∈ {0, 1}mvn n = 1, . . . , N
xn ∈ RI , un ∈ Rmun

(RP)

where wn is a parameter that has to be set so that
∑N

n=1 wn = 1 0 ≤ wn ≤ 1
It is to be noted that there are multiple ways to represent the coupling constraints (1) and

(2) and we have chosen to express them as Eqs. 3 and 4 in the model (RP).

xn − xn+1 = 0 n = 1, . . . , N − 1 (3)

yn − yn+1 = 0 n = 1, . . . , N − 1 (4)

The coupling constraints in (RP) are the new linking constraints. The bounds of the non-
linking variables in (RP) are the same as those in the model (P), while the bounds of the
duplicate variables introduced in model (RP) are the same as those of the corresponding
linking variables in (P). Finally, the reason for reformulating (P) to obtain (RP) is that it helps
in getting stronger relaxations, after it has been decomposed into independent sub-models.

The objective of this work is to globally optimize model (P) (or equivalently (RP)). Gen-
erally, some form of branch and bound search is used to carry out the global optimization
of a nonconvex mathematical model. In such branch and bound procedures, bounds on the
global optimum are obtained by solving relaxations that are constructed by convexifying the
nonconvex terms in the model (e.g. see [41]). These relaxations are often very weak, which in
turn lead to weak bounds, and hence to poor performance of the algorithm. The fact that the
model (P) has a decomposable structure can be exploited to derive tight bounds on the global
optimum of (P). The basic idea in this paper is to propose a cutting plane technique based
on Lagrangean decomposition to produce tight relaxations for problem (P) for its global
optimization. In particular, we propose a branch-and-cut framework for solving problem (P)
to global optimality wherein we solve a convex relaxation of the original nonconvex model
with cuts added to it in order to obtain a strong lower bound on the solution at every node
of the search tree. These relaxation strengthening cuts are generated using the solution of
the sub-problems that are obtained by decomposing (P) using Lagrangean decomposition.
Feasible solutions, which are upper bounds on the solution of problem (P), are obtained using
a heuristic at every node of the search tree. These lower and upper bounds are then converged
to lie within a specified tolerance in the branch-and-cut algorithm.
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3 Solution methodology

We propose a branch-and-cut framework in which lower and upper bounds on the global
optimum are converged to within a specified tolerance. A lower bound at a particular node
in the tree is obtained by solving a convex relaxation of (P) with some cuts added to it. An
upper bound at a given node is found by locally optimizing (P) over the domain space of the
node.

3.1 Generation of tight relaxations

A convex relaxation of the nonconvex MINLP model (P) can be obtained by replacing
the nonconvex terms by convex under- and over-estimators appearing in the model (P).
Various techniques for constructing such estimators have been proposed by Maranas and
Floudas [29], Quesada and Grossmann [36], Ryoo and Sahinidis [37], Tawarmalani and Sah-
inidis [41] and Zamora and Grossmann [45], among other authors. For concave separable
and bilinear functions, linear under- and over-estimators that correspond to convex enve-
lopes are used for convexifying the nonconvex terms in the model (P) yielding a Mixed
Integer Linear Programming (MILP) relaxation. A derivation of linear estimators for fac-
torable functions is given in McCormick [30]. These convex relaxations can be weak for
large-scale nonconvex problems like (P), particularly when the bounds on the variables
present in the model are far apart. Due to this reason, the use of these relaxations in a
branch and bound algorithm often leads to inefficient performance of the algorithm. To
speed up the search for the global optimum, we need to construct stronger relaxations for
the branch and bound procedure. In order to do this, we propose to construct a convex relax-
ation of (P) with certain cuts added to it. The solution of this convex relaxation provides
a tight lower bound on the solution at every node of the branch and bound search tree.
These cuts are derived based on a decomposition of (P) that is described in the following
section.

3.1.1 Conventional Lagrangean decomposition

The most basic way of decomposing the model (RP) is to remove the coupling constraints
from the constraint set. We use the concept of Lagrangean decomposition [18] to decom-
pose the model (RP).1 In this approach, the coupling constraints are dualized. That is, they
are multiplied by fixed values of Lagrange multipliers, and are transferred to the objective
function to give a relaxation of model (RP), denoted by (LRP), which can be decomposed
into N independent sub-models.

min zL R P =
N∑

n=1

wns(xn, yn) +
N∑

n=1

rn(un, vn) +
N−1∑

n=1

(λ
x
n)T (xn − xn+1)

+
N−1∑

n=1

(λ
y
n)T (yn − yn+1)

1 The similar idea of “variable splitting” has been introduced by Jornsten et al. [22].
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s.t. hn(un, vn) = 0 n = 1, . . . , N
gn(un, vn) ≤ 0 n = 1, . . . , N
h′

n(xn, yn, un, vn) = 0 n = 1, . . . , N
g′

n(xn, yn, un, vn) ≤ 0 n = 1, . . . , N
x L ≤ xn ≤ xU n = 1, . . . , N
yn ∈ {0, 1}J n = 1, . . . , N
uL

n ≤ un ≤ uU
n n = 1, . . . , N

vn ∈ {0, 1}mvn n = 1, . . . , N
xn ∈ RI , un ∈ Rmun

(LRP)

where the vectors of Lagrange multipliers are defined as follows: λ
x
n =

[
λ

x1
n λ

x2
n . . . λ

xI
n

]T

n = 1, . . . , N − 1, and λ
y
n =

[
λ

y1
n λ

y2
n . . . λ

yJ
n

]T
n = 1, . . . , N − 1.

In this work, we analyze the problem of decomposition, generating relaxations and fea-
sible solutions and updating multipliers based on the fact that (RP) is decomposed into N
sub-problems.

We now decompose (LRP) into the following sub-problems (SPn), n = 1, . . . , N ,

min zn = wns(xn, yn) + rn(un, vn) + (λ
x
n − λ

x
n−1)

T (xn)

+ (λ
y
n − λ

y
n−1)

T (yn)

s.t. hn(un, vn) = 0
gn(un, vn) ≤ 0
h′

n(xn, yn, un, vn) = 0
g′

n(xn, yn, un, vn) ≤ 0
x L ≤ xn ≤ xU

yn ∈ {0, 1}J

uL
n ≤ un ≤ uU

n
vn ∈ {0, 1}mvn

xn ∈ RI , un ∈ Rmun

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

n = 1, . . . , N

(SPn)

where λ
x
0 = 0, λ

y
0 = 0, λ

x
N = 0and λ

y
N = 0.

Each of these sub-models has (I + J + mun + mvn ) variables and (qhn + qgn + qh′
n
+ qg′

n
)

constraints, while the original model (P) has (I + J + ∑N
n=1 mun + ∑N

n=1 mvn ) variables
and (

∑N
n=1 qhn + ∑N

n=1 qgn + ∑N
n=1 qh′

n
+ ∑N

n=1 qg′
n
) constraints, and hence each of these

smaller sub-models can be assumed to be easier to solve than the full space model (P). We
globally minimize each of these sub-problems to obtain a set of solutions z∗

n(n = 1, . . . , N ).
In conventional Lagrangean decomposition, the sum

∑N
n=1 z∗

n = zL B yields a valid lower
bound on the global optimum of (P) over a particular region of space. Such a technique has
been used by Carøe and Schultz [9] for MILPs and by Westerberg and Shah [44] for solving
nonconvex NLPs. It should be mentioned here that the tightest possible lower bound over a
particular region is obtained from the solution of the Lagrangean dual (involving the set of
Lagrange multipliers λ), which is given by:

zD = max
λ

zL B (D)

Since this dual problem is in itself very hard to solve, we use a heuristic method given in
Fisher [12,13] where we iterate with different values of the Lagrange multipliers to generate
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valid lower bounds. This author also provides other techniques based on sub-gradient opti-
mization to solve the dual problem. Furthermore, a code has been developed by Kiwiel [26]
for solving this problem with such a method, but it is not widely available. The method used
in our work to iteratively update the Lagrange multipliers is discussed in the appendix.

Remark In practice we are able to find the global optimum of nonconvex MINLPs with ε-tol-
erance for the gap between the upper and lower bounds, and so we use zL∗

n in our computation
instead of the exact global optimum z∗

n , where zL∗
n is the highest valued lower bound on the

global optimum of sub-problem (SPn).

3.1.2 Optimality based cutting planes

We propose to use the decomposition of (LRP) discussed above to derive bound strengthen-
ing cuts. These cuts are written in terms of the variables appearing in the objective function
of (P) and the Lagrange multipliers. Using the globally optimal solutions of the sub-prob-
lems obtained by decomposing (LRP) we can generate valid cuts in the space of the original
linking and non-linking variables, which are given below in Eq. (Cn), n = 1, . . . , N . A
particular cut (Cn) is obtained by replacing the duplicate variables in the objective function
of the sub-problem (SPn) with the original linking variables and enforcing the condition that
the resulting expression has to be greater than or equal to the global optimum (z∗

n) of (SPn).

z∗
n ≤ wns(x, y) + rn(un, vn) + (λ

x
n − λ

x
n−1)

T (x) + (λ
y
n − λ

y
n−1)

T (y) (Cn)

Theorem 1 The cuts (Cn), n = 1,…,N are valid, and do not cut off any portion of the feasible
region of (RP) (or equivalently (P)).

Proof A cut (Cn) can be written as follows in the space of the duplicate variables appearing
in model (RP):

z∗
n ≤ wns(xn, yn) + rn(un, vn) + (λ

x
n − λ

x
n−1)

T (xn) + (λ
y
n − λ

y
n−1)

T (yn)

Assume that a cut (Cn) chops off a part of the mixed-integer feasible region of (RP). This
implies that there exists a mixed-integer point (xn∗, yn∗, u∗

n, v∗
n ) for which that particular cut

(Cn) is violated. Written in terms of the duplicate variables, the violated cut is as follows:

z∗
n > wns(xn∗, yn∗)+rn(u∗

n, v∗
n)+(λ

x
n − λ

x
n−1)

T (xn∗)+(λ
y
n − λ

y
n−1)

T (yn∗) (VC)

This means that the feasible region of the problem (RP) contains a point (xn∗, yn∗, u∗
n, v∗

n ),
where the right-hand side of the violated cut (VC) takes a value of z′

n , which is less than
z∗

n (which is the globally optimal solution of sub-problem (SPn)). This is not possible, since
the feasible region of the sub-problem (SPn) is relaxed and therefore larger than the feasible
region of (RP), and the global optimum of (SPn) has to be less or equal to the value taken by
the expression on the right side of cut (Cn) in the problem (RP). Hence, z′

n has to be greater
than z∗

n , which contradicts the construction (VC) and therefore none of the constraints (Cn),
n = 1, . . . , N are violated, and thus all them are valid. ��

In practice, z∗
n is replaced by zL∗

n in (Cn), n = 1, . . . , N . These cuts are then added to the
model (P). Futhermore, the Lagrange multipliers can be updated in order to derive additional
cuts to add to the original problem (P). This procedure of updating the multipliers and adding
cuts can be performed an arbitrary number of times. The problem (P) with the cuts added,
is denoted as (P′), where for the sake of simplicity in the presentation, only one set of cuts

123



J Glob Optim (2008) 41:163–186 171

derived from fixed Lagrange multipliers is shown, although multiple sets of cuts can easily
be generated and used.

min z P ′ = s(x, y) +
N∑

n=1
rn(un, vn)

s.t. hn(un, vn) = 0 n = 1, . . . , N
gn(un, vn) ≤ 0 n = 1, . . . , N
h′

n(x, y, un, vn) = 0 n = 1, . . . , N
g′

n(x, y, un, vn) ≤ 0 n = 1, . . . , N
z∗

n ≤ wns(x, y) + rn(un, vn) + (λ
x
n − λ

x
n−1)

T (x)

+(λ
y
n − λ

y
n−1)

T (y) n = 1, . . . , N
x L ≤ x ≤ xU

y ∈ {0, 1}J

uL
n ≤ un ≤ uU

n n = 1, . . . , N
vn ∈ {0, 1}mvn n = 1, . . . , N
x ∈ RI , un ∈ Rmun

(P′)

When problem (P′) is convexified by replacing the nonconvex nonlinear terms by valid
under- and over-estimators, the resulting relaxation denoted by model (R) is then solved to
predict a valid lower bound on the solution of problem (P). For specific nonconvex terms,
special convex estimators can be selected (see [41]). The relaxation (R) is as follows,

min zR = s̄(x, y) +
N∑

n=1
r̄n(un, vn)

s.t. h̄n(un, vn) ≤ 0 n = 1, . . . , N
ḡn(un, vn) ≤ 0 n = 1, . . . , N
h̄′

n(x, y, un, vn) ≤ 0 n = 1, . . . , N
ḡ′

n(x, y, un, vn) ≤ 0 n = 1, . . . , N
s̃(x, y) ≤ 0
r̃n(un, vn) ≤ 0 n = 1, . . . , N

z∗
n ≤ wn s̄(x, y) + r̄n(un, vn) + (λ

x
n − λ

x
n−1)

T (x)

+(λ
y
n − λ

y
n−1)

T (y) n = 1, . . . , N
x L ≤ x ≤ xU

y ∈ {0, 1}J

uL
n ≤ un ≤ uU

n n = 1, . . . , N
vn ∈ {0, 1}mvn n = 1, . . . , N
x ∈ RI , un ∈ Rmun

(R)

In model (R), s̄(.) and r̄n(.) are the convex reformulations of the functions s(.) and rn(.),
respectively. The functions h̄n(.) ≤ 0, ḡn(.) ≤ 0, h̄′

n(.) ≤ 0 and ḡ′
n(.) ≤ 0 include the con-

vexified forms of the functions hn(.) = 0, gn(.) ≤ 0, h′
n(.) = 0 and g′

n(.) ≤ 0, respectively
and also include the convex estimator equations for the nonconvex terms appearing these
functions. s̃(.) and r̃n(.) include the under- and over-estimator equations for the nonconvex
terms in s(.) and rn(.), respectively. The convex components of the original set of constraints
hn(.) = 0, gn(.) ≤ 0, h′

n(.) = 0 and g′
n(.) ≤ 0, and convex components of the functions s(.)

and rn(.) in the objective are left unchanged.

Proposition 1 The lower bound obtained by solving (R) is at least as strong as the one
obtained by solving a convex relaxation of (P) obtained by convexifying the nonconvex terms
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Proof Let the feasible region of the convex relaxation of (P), which is obtained by convex-
ifying the nonconvex terms in (P), be denoted by DC R .

DC R = {(x, y, un, vn) : x ∈ RI , x L ≤ x ≤ xU , y ∈ {0, 1}J , un ∈ Rmun ,

uL
n ≤ un ≤ uU

n , vn ∈ {0, 1}mvn , h̄n(un, vn) = 0 ∀n, ḡn(un, vn) ≤ 0

∀n, h̄′
n(x, y, un, vn) = 0 ∀n, ḡ′

n(x, y, un, vn) ≤ 0 s̃(x, y) ≤ 0,

r̃n(un, vn) ≤ 0 ∀n}
The feasible region of the relaxation (R) (given by DR), which is obtained by adding the cuts,

z∗
n ≤ wn s̄(x, y) + r̄n(un, vn) + (λ

x
n − λ

x
n−1)

T (x) + (λ
y
n − λ

y
n−1)

T (y) n = 1, . . . , N

to DC R , is more restricted than DC R since DR ⊆ DC R . Therefore, it trivially follows that
the solution of (R) yields at least as tight a lower bound as would be obtained by solving the
convex relaxation of (P), given by (CR). ��

Proposition 2 The lower bound obtained by solving (R) is at least as strong as the lower
bound obtained from Lagrangean decomposition when all N sub-models are solved to global
optimality.

Proof Taking a summation over all n of the derived cuts (Cn), n = 1, . . . , N ,we get,

N∑

n=1

z∗
n ≤

N∑

n=1

[wn s̄(x, y) + r̄n(un, vn) + (λ
x
n − λ

x
n−1)

T (x) + (λ
y
n − λ

y
n−1)

T (y)]

N∑

n=1

z∗
n ≤ s̄(x, y) +

N∑

n=1

r̄n(un, vn) (LC)

From the left-hand side of Eq. (LC), we have
∑N

n=1 z∗
n = zL B , obtained from a conven-

tional Lagrangean decomposition as mentioned in Sect. 3.1.1. The right-hand side of (LC)
is the objective function of the relaxation (R). Hence, Eq. (LC) can be written as,

zL B ≤ zR

From which it follows that the optimal objective of (R) will always be greater than or equal
to the solution obtained from a conventional Lagrangean decomposition when all the N
sub-models are solved to global optimality. ��

We often obtain stronger lower bounds by solving (R) than from conventional Lagrangean
decomposition or by solving a convex relaxation of (P) because the use of the Lagrangean
cuts (Cn), n = 1,…,N with the constraints pertaining to the different sub-models in (R) helps
in tightening the feasible space of (R).

We should note here that the lower bound obtained by adding convexified bound strength-
ening cuts to the convex relaxation of (P) is computationally more expensive than Lagrangean
decomposition since the relaxation (R) needs to be solved in addition to solving the sub-prob-
lems to global optimality at each node of the search tree. However, the tighter lower bounds
obtained using this method may greatly reduce the number of nodes in the branch and bound
enumeration leading to an overall acceleration of the search.
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Remarks

1. In the proposed cut generation technique it is not necessary to solve N global optimization
problems to obtain a valid lower bound, as is required in a pure Lagrangean decomposition
algorithm. An arbitrary number of cuts can be generated and included in the relaxation to
get strong lower bounds.

2. An infinite number of cuts derived from all sets of values of the Lagrange multipliers
would yield the tightest possible relaxation over a sub-region of the feasible space of (P).

3. We can take advantage of the different ways to decompose model (RP) in order to con-
struct tight relaxations. A subset of the coupling constraints can be relaxed, leaving the
remaining equality constraints in the constraint set. In this way, the model (RP) can be
decomposed into fewer than N sub-models. This is analogous to combining some of the
N sub-models in (RP) into a single model and letting the remaining sub-models remain
independent. The key point here is that relaxing fewer coupling constraints results in
tighter relaxations, as then fewer constraints are violated. This is turn leads to stronger
cuts. Furthermore, relaxing different subsets of the coupling constraints would lead to
different decomposed sub-models obtained from (RP), that in turn would translate into
different cuts.

4. Lower bounding problem in reduced space: The relaxation (R) that is constructed by
adding cuts to (P) and convexifying the resulting model may become computationally
expensive to solve. In order to overcome this problem, we can consider another approach
based on the concept of conventional Lagrangean decomposition for generating a lower
bound on the global optimum of (P) over a domain of space. We select any ‘r’ sub-mod-
els from the model (RP) and combine them into a single problem (S P ′) and separate
the remaining ‘n-r’ sub-models into independent sub-problems. This is equivalent to not
relaxing ‘r-1’ coupling constraints pertaining to the chosen ‘r’ sub-models in the model
(RP). This means that model (RP) can be now decomposed into ‘n − r + 1’ sub-models,
where we have ‘n-r’ independent sub-models and another model (S P ′). Based on the
global optima of the selected ‘r’ sub-models, we generate ‘r’ cuts and incorporate them
into model (S P ′) to get model (r S P ′), which is solved to global optimality to obtain a
global optimum zr S P ′

using the proposed algorithm in this work. Theoretically, the sum
of zr S P ′

and the global optima of the remaining ‘n-r’ sub-problems is a lower bound on
the global optimum of (P) over the given domain. In this way, we ensure that the size of the
largest relaxation that has to be solved does not exceed the combined size of the ‘r’ chosen
sub-models and we avoid solving the full size relaxation that includes N sub-models. The
value of the parameter ‘r’ can be specified by the user to control the size of the problem
(r S P ′).

3.2 Generation of good feasible solutions

It is very important to obtain good feasible solutions that are close to the global solution,
early on in the search tree. They also help in generating additional cuts, which leads to stron-
ger relaxations, and in turn leads to improved computational efficiency. We fix the values
of the discrete linking variables in (P) to the optimal values obtained from solution of the
relaxation (R) and locally optimize the resulting nonconvex NLP using the optimal solution
of the continuous variables in (R) as a starting point. If this NLP is globally optimized, we
can derive an integer cut involving the binary variables in (R) (see [4]), to be added to the
relaxation (R) in the nodes beneath the current node in the branch and bound tree. This is
to preclude the occurrence of current combination of the discrete variables in forthcoming
nodes. It is to be noted that if the global optimization of the NLP (obtained by fixing the
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integer variables in the original MINLP) yields an infeasible solution, we can discard the
particular integer solution.

3.3 Global optimization algorithm

We propose a deterministic branch and bound algorithm that makes use of the relaxations
and feasible solutions, described in Sects. 3.1 and 3.2, respectively, to solve (P) to global
optimality. F denotes a list of problems given by Fl , each problem defined over a certain
region of space �l (which is the domain of a node l in the tree). The steps involved in the
proposed algorithm are summarized as follows:

Step 1: Initialization—The bounds on the variables in the model are determined by using the
numerical data given for a particular problem. Some variables can also be fixed to certain
values using these data. The hyper-rectangle formed by the initial bounds of all the variables
in (P) is defined by �0. This also is the domain space of the problem (P) at the root node of
the tree. The bounds of the duplicate variables in the sub-problems are the same as that of
the corresponding linking variables in the model (P). Further in this step, the model (P) is
locally optimized to obtain an initial overall upper bound (OUB) on the objective function.
Sequence of steps:

(a) Set F = F0(�0)
(b) Set zU = OU B

Step 2: Bound contraction (optional)—Bound contraction is an important aspect of global
optimization. It serves two purposes. One is that it narrows the search region for finding
the global optimum, and the other is that tighter relaxations can be constructed over con-
tracted bounds leading to the acceleration of the convergence of the search algorithm. The
upper and lower bounds of the variables appearing in the nonconvex terms in model (P)
can be contracted using a simplified version of the bound contraction technique by Zamora
and Grossmann [45]. According to the technique mentioned in this work, we solve a set of
minimization and maximization problems, which are all LPs or convex NLPs, obtained by
constructing convex under- and over-estimators for the nonconvex terms and relaxing the
integrality constraints on the discrete variables in model (P).
Step 3: Formulation of Lagrangean relaxation and decomposition—Formulate model (LRP)
over domain �l and decompose into N sub-problems (SP1)–(SPN).
Sequence of steps:

(a) Solve sub-problems (SP1)–(SPN) to global optimality using any deterministic global
optimization algorithm to determine solutions z∗

n n = 1, . . . , N .
If the solutions obtained (xn∗, yn∗, u∗

n, v∗
n n = 1, . . . , N ) are feasible for the model

(RP(�l)):
if

∑N
n=1 z∗

n < zU , set zU = ∑N
n=1 z∗

n , delete Fl(�l ) from F , go to step 6, else, delete
Fl(�l ) from F , go to step 6.

(b) If any sub-model (SPn) is found to be infeasible, delete Fl(�l ) from F , go to step 6. The
model (P) is infeasible if this occurs at the root node.

(c) Generate N cuts (C1)–(CN) using solutions z∗
1, z∗

2, . . . , z∗
N as described in Sect. 3.1.2.

(d) (Optional) Update Lagrange multipliers using the procedure given in the appendix and
repeat step 3.

Step 4: Bounding of the global optimum—Add cuts to the problem (P) defined over a par-
ticular node of the tree and solve the convex relaxation of the resulting model, denoted by
model (R), yielding a valid lower bound (LB) at that node of the tree.
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Sequence of steps:

(a) Add cuts (C1)–(CN) to Fl(�l ) and convexify the resulting model to generate relaxation
model Rl(�l ).

(b) Solve Rl(�l ) to obtain a lower bound (zR(�l)) on the solution of Fl(�l ).

Step 5: Obtaining an upper bound (UB)—A local optimum of (P) is found by using the
technique described in Sect. 3.2, and is designated an upper bound on the global optimum of
(P). If this is found to be better than the current OUB, the OUB is updated to take the value
of the improved upper bound, hence making the OUB, the best available feasible solution.
Sequence of steps:

(a) Solve for an upper bound of problem Fl(�l ) over �l and denote it by zU B(�l ).
(b) If zU B(�l) < zU , set zU = zU B(�l ).

Step 6: Termination—A node in the branch and bound tree can be fathomed if one of the
following criteria is met:

(i) The lower bound found at the node exceeds the overall upper bound.
(ii) The optimality gap at the node is below a specified tolerance, ε1. The optimality gap

(gap(�l)) at a node is defined as:

gap(�l) =
∣
∣
∣

zU −zR(�l )

zU

∣
∣
∣ i f zU 
= 0

−zR(�l) i f zU = 0

(iii) If an upper bound zU of −∞ is found, the problem is unbounded and the search is
stopped.

The search is terminated when there are no open nodes remaining in the tree.
Sequence of steps:

(a) If zU = −∞, problem is unbounded, stop search
(b) Delete all sub-problems Fl(�l ) from F where zU − zR(�l)| ≤ ε1|zU | zU 
= 0
(c) If F = Ø, stop search, solution = zU

Step 7: Branching—The domain of a particular node in the branch and bound tree corre-
sponds to a certain region of the search space. Since there may be an optimality gap between
the lower bounds and the overall upper bound for some regions of the search space, such
regions for which the gap is greater than the specified tolerance are each further partitioned
into disjoint sub-regions to create two new nodes in the tree, and steps 2–6 are repeated
for each of these regions. We use certain heuristics similar to the ones used by Carøe and
Schultz [9] for the branching rules in this work. The branching is performed on the linking
variables (continuous or binary) present in the linking constraints. If the duplicate variables
corresponding to a certain scalar linking variable xi (or y j ), take the same value in the solu-
tion of all the sub-problems, that particular linking variable is not selected as the branching
variable. For any other potential branching variable, the dispersion of a scalar linking var-

iable xi ∈ x is defined as
∑N

n=1
|xn∗

i −xi |∣
∣
∣max

n
{xn∗

i }−min
n

{xn∗
i }

∣
∣
∣

where xn∗
i is the optimal value of the

duplicate variable corresponding to xi in the nth sub-problem (SPn), and xi =
∑N

n=1 xn∗
i

N . The
dispersion of a binary variable y j ∈ y is similarly defined. This dispersion is calculated from
the solution of the sub-problems formed using the set of Lagrange multipliers that provides
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the tightest bound on the global optimum in a conventional Lagrangean decomposition set-
ting. The linking variable xi (or y j ) for which this dispersion is maximum is branched on.
For a continuous variable xi , the average value xi is taken as the branching point while for a
binary linking variable y j , two new branches corresponding to y j = 0 and y j = 1 are created.
Theoretically, the branch and bound can be an infinite process if the branching is performed
on the continuous variables, but terminates in a finite number of nodes for ε1-convergence.
Sequence of steps:

(a) Select the last problem Fl(�l ) in F , and based on the solution of the sub-problems
(SPn(�

l)) n = 1, . . . , N , select a branching variable xi or y j

(b) Partition �l into two new sub-regions �l+1 and �l+2:

If xi is selected as the branching variable, create the new sub-regions �l+1 and �l+2 by
adding the constraints xi ≤ x̄i and xi ≥ x̄i , respectively to �l . If y j is selected as the
branching variable, create the new sub-regions �l+1 and �l+2 by adding the constraints
y j = 0 and y j = 1, respectively to �l .

(c) Add Fl+1(�l+1) and Fl+2(�l+2) to F , and delete Fl(�l ) from F , go to step 2

Convergence: The convergence of the branch-and-cut algorithm is guaranteed by the fact
that the search region can be partitioned further into sub-regions and the partitioning of the
regions yields a sequence of non-decreasing lower bounds which converge to the global
optimum [20]. The relaxations generated in the nodes while moving down the tree are tighter
than those constructed in the nodes above them, since the feasible space of the problems is
continuously being contracted and tighter estimators are being constructed to approximate
the nonconvex functions. While branching down the tree, some stopping criteria is required if
branching is carried out on the continuous variables. Hence, if the branching is performed on
the continuous variables and parallel to the coordinate axes, we can stop once the l∞-diameter
of the feasible sets of the sub-problems has fallen below a certain value.

Remarks

1. The decomposable structure of the problems allows parallelization of the algorithm. Each
of the sub-models (SP1)–(SPN) can be solved in parallel and so the computational time
for getting the lower bounds on the global solution of (P) can be reduced.

2. If the set of Lagrange multipliers in the sub-problems is kept the same in a parent node
and its children nodes, then only a subset of the sub-problems need to be solved to global
optimality at the children nodes. These sub-problems are selected based on the optimal
values of the duplicate variables in the solution of the sub-problems at the parent node.
For instance, let us select to branch on a particular linking variable xi (or y j ) from a parent
node with domain �l whose children nodes have domains �l+1 and �l+2. If the optimal
value of the duplicate variable xn∗

i (or yn∗
j ) obtained from the solution of a sub-model

(SPn(�
l)) n ∈ {1, 2, . . . , N } at the parent node lies within the bounds of the correspond-

ing variable xn
i (or yn

j ) in a child node, then that particular sub-problem SPn does not need
to be solved at the particular child node where this occurs. The optimal solution and the
optimal objective value of these unsolved sub-problems at the child node are taken to be
the same as that obtained from the solution of the corresponding sub-models at the parent
node with the domain �l .

3. Instead of using the above global optimization algorithm to solve (P) to global optimality,
the model (P) with cuts added to it (see Sect. 3.1.2), can be globally optimized directly
using commercial solvers (e.g. BARON for NLPs/ MINLPs) that are based on branch and
bound.
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4. For solving MILPs/convex MINLPs, we can use the branch-and-cut algorithm where add-
ing the Lagrangean cuts to the model tightens the relaxation of the original model, and
hence convergence to the optimal solution is faster.

5. The algorithm presented in this section is generic and is also valid for the case when the
model (P) is decomposed into N ′ (≤ N ) sub-models.

4 Results

Numerical examples have been solved using the proposed algorithm. The examples were
formulated using GAMS [8] and solved on an Intel 3.2 GHz Linux machine with 1,024 MB
memory. GAMS/CONOPT 3.0 and GAMS/ BARON 7.2.5 were used to solve the NLP prob-
lems, GAMS/CPLEX 9.0 was used for the LP and MILP problems, and GAMS/DICOPT
and GAMS/ BARON 7.2.5 were employed for solving the MINLP problems.

4.1 Example 1: illustrative problem

We solve a small problem as a first example to demonstrate the concepts proposed in the
paper. This model (EP), as shown below, has 1 binary variable, 19 continuous variables, 10
constraints and 15 nonconvex terms. The objective function is linear while the constraints
involve bilinear terms.

min zE P = 5x + 7y + 2u11 + 6u14 + 5u21 + 9u24 + 3u31 + 11u34

s.t.

u11u14 − 3u12u15 + 4u13u16 + 4 = 0
u11u13 − 5 = 0

5u21u24 − u22u25 − u23u26 + 5 = 0
u21u23 + u22u24 − 2u25u26 − 5 = 0
3u31u34 + 4u32u35 − u33u36 + 3 = 0
u31u33 + u32u34 − 4 = 0

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

Non-linking equations

x ≥ u11

x ≥ u21

x ≥ u31

3y ≤ x ≤ 5y

⎫
⎪⎪⎬

⎪⎪⎭
Linking constraints

0 ≤ x ≤ 5
y ∈ {0, 1}
1.5 ≤ u11 ≤ 3 0.5 ≤ u21 ≤ 4.5 1.5 ≤ u31 ≤ 3.5
1.3 ≤ u12 ≤ 11 0.2 ≤ u22 ≤ 0.5 0.5 ≤ u32 ≤ 13
1 ≤ u13 ≤ 2.5 0 ≤ u23 ≤ 5 1 ≤ u33 ≤ 1.9
2 ≤ u14 ≤ 4 0.25 ≤ u24 ≤ 5 0.5 ≤ u34 ≤ 2.5
0 ≤ u15 ≤ 3 3.2 ≤ u25 ≤ 8.7 2 ≤ u35 ≤ 7.2
0 ≤ u16 ≤ 10 0.15 ≤ u26 ≤ 7.8 1.5 ≤ u36 ≤ 9

(EP)

This model is a collection of 3 sub-models. The variables x and y are the continuous and
binary linking variables, respectively, while the other variables in the model correspond to
the three sets of continuous non-linking variables. This model is very small and is solved in a
time of the order of a tenth of second using the commercial solver BARON [38], yielding the
global optimum of 64.499. The optimal values of the variables are: x = 3, y = 1, u11 = 2,
u21 = 2.7138, u31 = 1.7266, u12 = 1.3, u22 = 0.5, u32 = 1.4388, u13 = 2.5, u23 = 5,
u33 = 1.9, u14 = 2, u24 = 0.25, u34 = 0.5, u15 = 2.0513, u25 = 3.2, u35 = 2, u16 = 0,
u26 = 1.3585, u36 = 9. Due to the small size of the problem, the computational times of
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solving the original problem and its various relaxations are not analyzed for this example.
The model (EP) is reformulated to produce a form analogous to (RP) which is relaxed to
obtain model (LR-EP):

min zL R−E P = 5x1 + 7y1 + 2u11 + 6u14 + 5u21 + 9u24 + 3u31 + 11u34

+λ̄x
1(x1 − x2) + λ̄x

2(x2 − x3) + λ̄
y
1(y1 − y2) + λ̄

y
2(y2 − y3)

s.t. u11u14 − 3u12u15 + 4u13u16 + 4 = 0
u11u13 − 5 = 0
5u21u24 − u22u25 − u23u26 + 5 = 0
u21u23 + u22u24 − 2u25u26 − 5 = 0
3u31u34 + 4u32u35 − u33u36 + 3 = 0
u31u33 + u32u34 − 4 = 0

x1 ≥ u11

x2 ≥ u21

x3 ≥ u31

3y1 ≤ x1 ≤ 5y1

3y2 ≤ x2 ≤ 5y2

3y3 ≤ x3 ≤ 5y3

0 ≤ x1 ≤ 5 0 ≤ x2 ≤ 5 0 ≤ x3 ≤ 5
y1, y2, y3 ∈ {0, 1}
1.5 ≤ u11 ≤ 3 0.5 ≤ u21 ≤ 4.5 1.5 ≤ u31 ≤ 3.5
1.3 ≤ u12 ≤ 11 0.2 ≤ u22 ≤ 0.5 0.5 ≤ u32 ≤ 13
1 ≤ u13 ≤ 2.5 0 ≤ u23 ≤ 5 1 ≤ u33 ≤ 1.9
2 ≤ u14 ≤ 4 0.25 ≤ u24 ≤ 5 0.5 ≤ u34 ≤ 2.5
0 ≤ u15 ≤ 3 3.2 ≤ u25 ≤ 8.7 2 ≤ u35 ≤ 7.2
0 ≤ u16 ≤ 10 0.15 ≤ u26 ≤ 7.8 1.5 ≤ u36 ≤ 9

(LR-EP)

Here x1, x2 and x3 are the duplicate variables corresponding to the linking variable x , while
y1, y2 and y3 are the duplicate variables corresponding to the linking variable y. The sets

of Lagrange multipliers are given by λ1 =
[
λ

x
1 λ

y
1

]T
, λ2 =

[
λ

x
2 λ

y
2

]T
and λ =

[
λ1

λ2

]

. We

decompose model (LR-EP) into 3 separate sub-problems (EP-S1), (EP-S2) and (EP-S3) and
solve each one to global optimality to within a tolerance of 1% between the lower bounds and
the global optimum, and use the best possible lower bounds so obtained to generate cutting
planes as described in Sect. 3.1.2.

min zE P−S1 = 5x1 + 7y1 + 2u11 + 6u14 + λ̄x
1(x1) + λ̄

y
1(y1)

s.t. u11u14 − 3u12u15 + 4u13u16 + 4 = 0
u11u13 − 5 = 0

x1 ≥ u11

3y1 ≤ x1 ≤ 5y1

0 ≤ x1 ≤ 5
y1 ∈ {0, 1}
1.5 ≤ u11 ≤ 3 1.3 ≤ u12 ≤ 11 1 ≤ u13 ≤ 2.5
2 ≤ u14 ≤ 4 0 ≤ u15 ≤ 3 0 ≤ u16 ≤ 10

(EP-S1)
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Table 1 Numerical results for
the root node for example 1

Iteration k Lagrange multipliers (λ̄) Bound from Lagrangean

decomposition (zL B )
λ̄x

1 λ̄x
2 λ̄

y
1 λ̄

y
2

Iteration 1 1 0.5 0.5 1 62.358

Iteration 2 0.46475 0.5 0.5 1 63.3324

min zE P−S2 = 5u21 + 9u24 + (λ̄x
2 − λ̄x

1)x2 + (λ̄
y
2 − λ̄

y
1)y2

s.t. 5u21u24 − u22u25 − u23u26 + 5 = 0
u21u23 + u22u24 − 2u25u26 − 5 = 0

x2 ≥ u21

3y2 ≤ x2 ≤ 5y2

0 ≤ x2 ≤ 5
y2 ∈ {0, 1}
0.5 ≤ u21 ≤ 4.5 0.2 ≤ u22 ≤ 0.5 0 ≤ u23 ≤ 5
0.25 ≤ u24 ≤ 5 3.2 ≤ u25 ≤ 8.7 0.15 ≤ u26 ≤ 7.8

(EP-S2)

min zE P−S3 = 3u31 + 11u34 + (−λ̄x
2)x3 + (−λ̄

y
2)y3

s.t. 3u31u34 + 4u32u35 − u33u36 + 3 = 0
u31u33 + u32u34 − 4 = 0

x3 ≥ u31

3y3 ≤ x3 ≤ 5y3

0 ≤ x3 ≤ 5
y3 ∈ {0, 1}
1.5 ≤ u31 ≤ 3.5 0.5 ≤ u32 ≤ 13 1 ≤ u33 ≤ 1.9
0.5 ≤ u34 ≤ 2.5 2 ≤ u35 ≤ 7.2 1.5 ≤ u36 ≤ 9

(EP-S3)

At the root node of the branch-and-cut tree, we start with arbitrary initial values of the
Lagrange multipliers (see Table 4.1) and update them using the method given in the appen-
dix (with zU = 64.499, α1 = 0.5, zL B(λ̄) = 62.358, x1 = 3, x2 = 3, x3 = 5, y1 = 1, y2 = 1,
y3 = 1) to obtain new values of the multipliers that are used to generate new cuts. Due to the
two iterations performed, we end up with 2 sets of 3 cuts each. The details of the Lagrange
multipliers at the root node and the lower bounds produced by these multipliers on using
these in a conventional Lagrangean decomposition method are given in Table 1.

By introducing the cutting planes into model (EP) and then convexifying the resulting
model using convex under- and over-estimators for the nonconvex bilinear terms, we obtain
relaxation (EPR) which is solved to obtain a lower bound of zE P R = 64.01. Comparing this
lower bound with the bounds given in Table 1, we can verify that proposition 2 (Sect. 3.1.2)
holds. Also, we take the original model (EP) and construct its MILP relaxation by replac-
ing the bilinear terms with McCormick [30] convex envelopes, and solve it to get a lower
bound of 61.6289. This shows that proposition 1 also holds true. Then, taking the value of
the variable y as obtained from the solution of (EPR), we fix it to the binary variable in (EP)
to transform the model (EP) into a nonlinear programming model. We use the solution from
(EPR) as a starting point to solve this NLP model using BARON and obtain an upper bound
of 64.499, which is also the global optimum. It is to be noted that so far the analysis for this
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z
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2222.30 ≤≤ x

56666.3 ≤≤ x

2222.3074.3 ≤≤ x

50 ≤≤ x zEPR = 64 .01

zUB = 64.499

zEPR = 67.48 973

zUB = 67.832

zEPR = 65.36 749

zUB = 65.61

zEPR = 64 .7746

zUB = 64.869

zEPR = 64.15 63

zUB = 64.499

zEPR = 64.36 722

zUB = 64.499

EPR = 64.44 13

UB = 64.499

PRUNED
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6666.32222.3 ≤≤ x
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Fig. 1 Branch-and-cut tree for example 1
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Fig. 2 Superstructure of a 2 Process unit – 2 Treatment unit integrated network

example has been done for the root node of the branch and bound tree. The lower bound
obtained is found to be within 0.76% of the upper bound, which is within a tolerance of 1%.
In order to reduce the optimality gap to 0.1%, we branch down the tree. The variable x is
chosen to be the branching variable and the structure of the branch-and-cut tree is given in
Fig. 1.

In all the nodes below the root node, the Lagrange multipliers used when solving the
sub-problems were kept the same as those at the root node and were not updated. The sub-
problems at all the children nodes were now solved to global optimality within a tolerance of
0.1% and the tightest possible lower bounds on the global optima of the sub-problems were
used in updating selected cuts. The updated cuts involved only the Lagrange multipliers used
in Iteration 2 at the root node (see Table 1).

4.2 Example 2: integrated water network problem

As a large-scale example, we consider the synthesis of an integrated water network shown in
Fig. 2, consisting of two water using process units, two water treating units and mixers and
splitters, operating in 10 scenarios under uncertain contaminant loads and recoveries [23].
The design problem is an example of a two-stage stochastic programming problem, which is
formulated as a deterministic multiscenario MINLP problem since the uncertain parameters
are assumed to take on a finite number of realizations. In this multiscenario model, each
scenario has a separate set of constraints, and there are non-anticipativity constraints that
connect together the various scenarios. The set of constraints for a scenario are the mass
balances for all the units in the network for that particular scenario and the constraints on
the contaminant levels in certain streams in the system for that scenario. The individual
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contaminant balances contain the nonconvex bilinear terms. The linking constraints link the
first stage design variables, which are the maximum flows allowed in each pipe in the system
with the second stage state variables, which are the flowrates in the corresponding pipes in
each scenario. The objective is to synthesize a network such that the total costs of designing
the network and the expected cost of operating the network optimally over all scenarios is
globally minimized. The first stage design costs include the investment cost for piping and
the capital cost of each water treatment unit. The operating costs of the network include the
cost of obtaining freshwater for use in the process units, the cost of pumping water through
the pipes and the operating costs of treating wastewater in the treatment units.

The detailed formulation of the problem is given in Karuppiah and Grossmann [23]. The
model and data used for this example can be obtained from these authors. We use a scenario
decomposition technique along the lines of the method described in Sect. 3.1.1 to solve the
problem to global optimality. The multiscenario MINLP for this example involves 10 dif-
ferent scenarios, 24 binary variables, 972 continuous variables, and 1,136 constraints, and
was initially attempted to be solved using GAMS/BARON 7.2.5. The termination criterion
used was that the gap between the relaxation and the global optimum should be less than
the specified tolerance of 1%. On directly using BARON to solve the problem, the solver
could not verify global optimality of the upper bound of $651,653.1 that it generated, in more
than 10 h. The application of the proposed algorithm also yields an objective of $651,653.1,
which is the global solution to the problem. However, on using the proposed algorithm, the
lower and upper bounds converge to within a tolerance of 1% at the root node of a branch
and bound tree in only 19.3 CPU secs.

A description of the steps involved in applying the proposed algorithm to this example is as
follows. Initially, an overall upper bound is found by solving the original nonconvex MINLP
model using DICOPT, which yields a local optimum of $685,466.5. Thereafter, in order to
obtain a lower bound, we formulate the Lagrangean relaxation of the original model (model
(LRP)) and decompose it into 10 different sub-problems (each sub-problem corresponding
to one scenario) as described in Sect. 3. Initially, all the Lagrange multipliers are arbitrarily
chosen to be 1. At the root node, each of these sub-problems is solved to global optimal-
ity using BARON with 1% tolerance for the gap between the lower bounds and the overall
upper bound. Next, we use the best valid lower bounds obtained from the solution of each
sub-problem (zL∗

n ) to generate 10 valid cuts analogous to Eqs. (C1)–(CN). The Lagrange
multipliers are then updated (with zU = 685,466.5, α1 = 0.5 and zL B(λ̄) = 644,856.8) to
generate 10 more valid constraints in the same fashion as above. The 20 cutting planes are
added to the original nonconvex MINLP model and the resulting model is then convexified to
yield a MILP relaxation, which when solved to optimality at the root node gives a solution of
$645,951.6, which corresponds to a valid lower bound on the global optimum of the problem
(P). An upper bound of $651,653.1 is found using GAMS/CONOPT 3.0 using the procedure
given in Sect. 3.2 and we find that the gap between the lower and upper bounds lies within a
tolerance of 1%. To further reduce the gap between the lower bounds and the global optimum
to less than 0.5%, we branch down the tree on a certain continuous design variable that is
chosen using the technique given in Sect. 3.3. The tree structure is shown in Fig. 3, while
computational times and numerical results for the nodes in the tree are given in Table 2.

It can be seen from Table 2 that at each node of the tree the lower bounds obtained using
our cutting plane approach (zR) are tighter than the best bounds obtained from conventional
Lagrangean decomposition technique (zL B ) using the given set of Lagrange multipliers and
also tighter than the lower bounds obtained from an MILP relaxation of the original noncon-
vex model (zC R). The total time taken in obtaining the global optimum using the proposed
algorithm is 85.5 CPU secs which includes the time for getting an initial overall upper bound
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Fig. 3 Branch-and-cut tree for
example 2
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Table 2 Numerical results for example 2

Node # Lower bound
using proposed
algorithm (z R )

Best bound from
Lagrangean
decomposition
(zL B )

Lower bound
from MILP
relaxation
(zC R )

Upper Bound
(zU B )

Total time taken at
nodea (CPU secs)

0 (root
node)

645,951.6 644,856.8 610,092.6 651,653.1 19.3

1 648,566.7 647,496.2 610,115.3 672,971.8 4.1

2 648,828.6 648,073.2 610,109.0 661,439.4 61.8

a Total time includes time for generating cuts, solving the relaxation problem (R) and generating an upper
bound

Table 3 Problem sizes for test
cases

Example Original MINLP model (P)

Number of binary Number of Number of
variables continuous variables constraints

A 77 1,222 1,377

B 48 300 946

C 42 330 994

D 57 381 1,167

using DICOPT (see Table 2 for details of the computational time at each node of the search
tree).

The proposed cutting plane approach was applied to the optimization of models arising
in other different applications. Table 3 shows the problem sizes of the cases on which the
cutting plane technique was used.

4.3 Other numerical results

Example A is a process synthesis problem similar to example 2, which is the design of
an integrated water network operating under uncertainty, and is taken from Karuppiah and
Grossmann [23]. Examples B, C and D are crude oil scheduling problems taken from Karup-
piah et al. [24]. It is to be noted that in examples B, C and D, the idea of the cutting planes
developed in this paper was used, but within an outer-approximation algorithm where again
tight relaxations are critical. Table 4 provides a comparison of the solution times with and
without the use of the proposed cutting planes.
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Table 4 Comparison of results with and without proposed cutting planes

Example Results without using cutting planes Results on using cutting planes

Global optimal Optimality Solution time Global optimal Optimality Solution time
solution gap (%) (CPU secs) solution gap (%) (CPU secs)

A 1,369,067.5 1.57 2,077.4 1,369,067.5 1.59 193.5

B 282.19 0.37 1,953.6 282.19 0.37 827.7

C 359.48 2.27 14,485.8 359.48 2.27 6,913.9

D 383.69 0 15,875.2 383.69 0 8,928.6

It can be seen from Table 4 that there is significant reduction in solution times using the
proposed cutting planes. For example A, the commercial global optimization solver BARON
[38] finds the global optimum with 1.57% optimality gap after 2077.4 CPU secs of compu-
tation without the proposed cuts. On applying the proposed algorithm to the problem, we
obtain the same global optimum with 1.59% optimality gap after 193.5 CPU secs. For exam-
ples B, C, and D, the outer-approximation algorithm proposed in Karuppiah et al. [24] takes
nearly half the time to solve when the cutting planes were incorporated in the relaxations as
compared to when the cuts were not used.

5 Conclusions

In this work we have proposed a decomposition algorithm for the global optimization of
large nonconvex mixed-integer nonlinear models that have a decomposable structure. This
algorithm involves decomposing the original model using Lagrangean duality and generat-
ing smaller sub-models whose global solutions are used in developing cuts which tighten the
convex relaxation of the original nonconvex model. Therefore, the main idea in this work is
to combine the concepts of Lagrangean decomposition and convex relaxations of nonconvex
models in order to generate tight bounds on the global optima of nonconvex models. The
resulting relaxations help in accelerating the search for the solution in a branch and bound
setting. The algorithm was applied to several example problems to illustrate its computational
performance and it was found that significant computational savings can be achieved.

Acknowledgements The authors gratefully acknowledge financial support from the National Science Foun-
dation under Grant CTS-0521769 and from the industrial members of the Center for Advanced Process Deci-
sion-making at Carnegie Mellon University.

Appendix

Updating the Lagrange multipliers
The scheme for updating the Lagrange multipliers is quite important since the choice of these
parameters has a large impact on the lower bounds predicted from solving the relaxation.
We start with an arbitrary initial guess for the values of the Lagrange multipliers and use a
sub-gradient method [12] to iteratively update these multipliers. The sequence of multipliers
is generated as follows:
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[
λ
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n

λ
y
n

]k+1

=
[

λ
x
n

λ
y
n

]k

+ tk
[

(xn∗)k − (xn+1∗)k

(yn∗)k − (yn+1∗)k

]

n = 1, . . . , N − 1

where tk is a scalar step size and (xn∗)k and (yn∗)k are the optimal values of the dupli-
cate variables xn and yn , respectively, at the kth iteration, obtained from the solution of
the sub-problem (SPn). We use the following formula to calculate the values of tk at every
iteration k:

tk = αk(zU − zL B(λ
k
))

∑N−1
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∥
∥
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∥
∥
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∥
∥
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∥
∥

2
)

where αk is a scalar chosen between 0 and 2, zL B(λ
k
) is the sum of the global optima of

the sub-problems (SP1)–(SPN), when the multipliers are set to λ
k =
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and zU is the value of the best found feasible solution to (P). The value of αk is halved at each
iteration when zL B fails to improve. The process of updating the multipliers and generating
a pool of cuts is iteratively carried out until a pre-specified iteration limit is reached.
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